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We consider a wide class of multistable systems perturbed by a dissipative term and ooin-teas squsrc-
wave dichotomous noise. These systems behave like their harmonically or quaaiperiodieally driven
counterparts: depcndlng upon the system parameters, the steady-state motion is eonSned to one well for
all time or experiences exits from the wells. This similarity suggests the application to the stoehaatic SYS-

tems of a Melnikov approach originally developed for the deterministic case. The noise induces a Melni-
kov process that maybe used to obtain a simple condition guaranteeing the nonoccurrence of exits from
a well. For systems wh~ unperturbed counterparts have phase space dimension 2, if that condition is
not satisfied, weak lower bQnds can be obtained for (a) the mean time of exit from a well and (b) the
probability that exits will not occur during a specified time interval.

PACS number(s):05.40. +j, 05,45. +b, 05.20.Dd, 05.90.+m

1. INTRODUCTION

Numerous studies have been devoted, especially in the
past decade, to dynamical systems driven by dichotomous
noise, which is characterized primarily by whether it is
“on” or “off’ or whether it is “up” or “down” [1,2]. One

example are systems where the excitation exceeds or does
not exceed a specified threshold, situations described as
on and off, respectively.

T& purpose of this paper is to present a Melnikov-
based procedure, applicable to a wide class of nonlinear
multistable systems, which yields a necessary condition
for the occurrence of exits from a well. The systems we
consider are perturbed by a dissipative term and dichoto-
mous noise excitation and have unperturbed Hamiltonian
counterparts. In addition, for systems whose unper-
turbed counterparts have phase space dimension 2 we
show that, if the neeessary condition for the occurrence
of exits is satisfied, our procedure can be used to obtain
weak lower bounds for (a) the mean exit time from a well
and (b) the probabilityy that exits will not occur during a
speci!ied time interval. Our approach yields information
on system behavior in a class of problems for which alter-
native approaches (e.g., the Fokker-Planck equation, oth-
erwise a much more powerful approach) are impractical
or inapplicable.

For specificity we consider the Duffing-Holmes equa-
tion perturbed by a linearly viscous dissipative term and a
stoehaatic excitation. We assume that the latter consists
of dichotomous noise of the coin-toss square-wave type
[2]. However, we show that our approach ean accommo-
date other typea of noise.

Section 11 describes the class of systems to which our
approach is applicable. Section 111briefly reviews basic
chaotic dynamics results pertaining to the exit problem
for muhistable systems with periodic or quasiperiodic ex-
citation and with stochastic excitation. Section IV de-
scribes the Melnikov process induced by dichotomous
noise and discusses the corresponding Melnikov-based
criterion guaranteeing the nonoccurrence of exits. Sec-
tion V diseuases lower bounds for the mean exit time and
the probability of no exits during a specified time inter-
val, as well as the method we use to obtain mean un-
crossing time estimates for the Melnikov process. Sec-
tion VI presents our conclusions.

II. DYNAMICALSYSTEMS

We consider second-order dynamical systems described
by the equation

..= - V’(z) +c[yG(r)--/3i] ,z (2, 1al

where 6<<1 and V(z) is a potential function. The unper-
turbed counterpart of Eq. (2. lb) is the Hamiltonian sys.
tern

..= - JP(Z) .z (2.IW

We assume that Eq. (2.lb) has a hyperbolic tixed point [3]
connected to itself by a Ihomoclinic orbit. However, all
the results of this paper also apply to systems with two
hyperbolic fixed points connected by a heteroclinic orbit.
As an example, we consider in this paper the Duffing-
Holmes equation, which has a double-well potential
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V(z)= z4/4–z2/2 , (2.2)

shown in F@ 1(a).
Equation (2.lb), with the potential (2.2), has the homo-

clinic orbks shown in Fig. 1(b). The homoclinic orbits
constitute a separatrix, that ia, a curve separating
motions in (2.lb) that evolve around the centers C or C’
and can never cross the potential barrier from motions
that evolve around the hyperbolic tlxed point O and cross
the potential barrier petiodcally (Fig. 1). For the poten-
tial (2.2), integration of Eq. (2.lb) [which may be rewrit-
ten as Afi= V’(z )dz] with initial conditions z =0, 2=0
yielda the expressions for the homocl.inic orbits

zo(t)=*(2)%ech(t) , (2.3a)

io(t)= T(2)%ech(t)tanh(t) . (2.3b)

For later use, we note that for the Duffittg-Holmes equa-
tion the modulus of the Fourier transform of the function
h(r) -20( –t)is

S(ro)=(2)1’2rosech( m/2) (2.4)

and

The approach presented

(2.5)

in this paper is also applicable
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I FIG. I. (a) potential wells for the bistable system and M
phase planc &lagramfor the unperturbed Hamiltonian system.
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to higher-order systems if their unperturbed counterparts
are completely integrable If amiltonian systems or
parametrized families of completely integrable Hamil-
tonian systems, with a degenerate homoclinic or hetero-
clinic structure. The perturbations are subject to condi-
tions defined in [4].

III. NECESSARYCONDITION FOR THE OCCURRENCE
OF EXrl’S

In this section we review briefly basic chaotic dynamics
results pertaining to the exit problem for multiatable sys-
tems with periodic or quasiperiodic excitation and with
stochastic excitation. Those results were originally ob-
tained for periodically excited systems [5]. They were
subsequently extended to qua$iperiodkally excited sys-
tems in [6] and to stochastic systems in [7].

A. Periodic or qmtsiperiodjcexcitation

Let us consider the phase space z,i, 0, where 6=wt, u
is a constant, the coordinate axis 00, denoted by r, is
normal to the plane z,2, and O is a hyperbolic fixed point
of Eq. (2. lb) [Fig. 2(a)]. The stable manifold W’(r) of
the hyperbolic orbit r is defined as the set of points
(zfJ0),2~(0),0) such that the orbits p~sing through
those points approach r as t.+ co. The unstable mani-
fold W“(r) is defined as the set of points [z~(0),z~(0),6]
such that the orbits passing through those points ap-
proach r as t ~ - co. The cross section of the stable and
unstable manifolds with any given plane 6= const is a
curve defiied by the coordinates Zo(t Mo( t) of the homo-
clinic orbit (2.3). For a planar system with a homoclinic
orbit it is clear that the stable and unstable manifolds
coincide.

The persistence theorem states that, for quasiperiodic
G(t) and sufficiently small E, the perturbed system has a
hyperbolic orbit rc wi~~ cocmiinates dependent on El r,

.
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FIG. 2. Stable and unstable numifolds for (a) the unperturbed
system and (b)the perturbed system (after [8]).
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is contained in a close neighborhood of r and approaches
r as ●etl [8]. The stable manifold W’(r.) is defined as
the set of points {z~(e,e),i~(e, 0),6] such that the orbits
passing through those points approach I’c as t ~ m. A
similar definition holds, in reverse time, for the unstable
manifold W’(r.).

.

The stable and unstable manifolds of the perturbed sys-
tem no longer coincide, as they do for 6=0 [Fig. 2(b)].
The separation distance between W’(r.) and W“(r.)
along a direction normal to the unperturbwl manifolds,
known as the Melnikou distance, is a function of 8 and t.
For any given cross section of the stable and unstable
manifolds by a plane 0= const (such a cross section is
termed in [6] a phase space slice; in the particular case of
harmonic excitation it is known as a Poincar& section [5]),
the Melnikov distance is a function oft only. To first or-
der, the Melnikov distance is proportional to the general-
ized Me/nikou@ction (GMF) [9], which can be shown to
have the expression

=–f?~= i;(T)dT+y~rn h(r)G(7–t)d7 , (3.1)M(t) _=
-m

where the filter in the convoluti&’integral of Eq. (3.1) is
h (t )=io(–t ) [5,6]. For sufficientl~ small c, if M (I) has
simple zeros, W*(rt ) and W“( rt ) intersect transversely;
if M ( t ) is bounded away from zero, W*(rt ) and W“( I’f)
do not intersect [5,6,8]. From the Smale-Birkhof
fheorem itcan be inferred that, for sufficiently small c,
the necessary condition for chaotic behavior (i.e., for the
largest Lyapounov exponent to be positive or, equivalent-
ly, for the system to be sensitive to initial conditions) is
that M(f) have simple zeros [5,6,8].

Since motion starting on a manifold never leaves that
manifold, the existence of a transverse intersection point
in a phase space slice implies the existence of an infinity
of intersection points. Areas in a phase space slice that
are bounded by segments of stable and unstable manifolds
between two successive intersection points are termed
lobes. A set of lobe segments forming a shape roughly
similar to the shape of the homoclinic orbit of the unper-
turbed counterpart of the system is termed a pseu-
doseparatrix [10] (Fig. 3). Unlike the homoclinic orbit
(i.e., the separatnx) of Fig. l(b), the pseudoseparatrix is
permeable, that is, it can allow motions occurring within
a well to exit from that well. The transport of phase

Dctrainiie

FIG. 3. Time sliceshowing a homoclinic tangle.

space across the pseudoseparatrix is eff’ted by detrain-
ing and entraining lobes. @Mtilng (entraining) lobes
are lobes that will cross or have crossed into the exterior
(interior) region bounded by the pseudoseparatrix [6]].
No such transport can occur in the absence of lobes. It
follows that the necesary condition for the occurrence of
exits in quasiperiodically excited multistable systems (1.1)
with sufficiently small perturbation is that the GMF have
simple zeros.

B. Stochastic exeitatioa

The results just summarized are applicable for systems
with quasiperiodc excitation. They can be applied to
systems with stochastic excitation provided that the exci-
tation can be approximated as closely as desired by sums
of N harmonic terms with random parameters, where N
is a tinite, albeit large number. For Gaussian excitation,
colored or white, such approximations are discussed in
[7].

In this paper we consider excitation by dichotomous
coin-toss square-wave noise, which has the expression

G(t)=aa [a+(n -l)]to<t S(a+n)to , (3.2)

where n=. . ., —2, —1,0,1,2,. . . is the set of integers, a
is a random variable uniformly distributed between Oand
1, an are independent randolm variables that take on the
values -1 and 1 with probabilities ~ and ~, respectively,
and to is a parameter of the process G(t). A rectangular
pulse wave of amplitude an nnd length tocentered at the
coordinates tn = (a + n —# )t ~ihas a Fourier transform

Fm(co)=an 1(2/O )sin(Oto/2)exp( – jotn )1

[11]. The pulse itself can therefore be expressed as a sum
of harmonic terms approximating as closely as desired
the inverse Fourier transform of F. (o). Each realization
of the coin-toss dichotomous square wave can be approxi-
mated arbitrarily closely by a superposition of such sums,
which is itself a sum of harmonics, that is, a quasiperiodic
function with parameters an.

Each realization of the noise, determined as it is by a
set of parameters an, induces a GMF characterized by
that set. The stochastic process G(t) is an ensemble of
realizations of the noise and induces an ensemble of reali-
zations of the GMF. This mtsernble is referred to as the
Melnikav process induced by G(t). The Melnikov process
M(t) can be obtained by using Eq. (3.1) in which G(t) is
given by Eq. (3.2), since each quasiperiodic realization of
the approximating process can be assumed to be arbi-
trarily close to the corresponding realization of the pro-
cess G(t).

IV. MELNIKOV PROCESS AND CRITERION
GUARANTEEING THE NONOCCURRENCE OF EXITS

From Eqs. (2.4), (2.5), and (3.1),

M(r)=– 4/3/3 +(2)] nyF(z) , (4.1)
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F(t)= ~ aa[–sech[(n +a)to-r]
a= -1

+seeh[(n +a-l)tO-t]] , (4.2)

where 1 k sufficiently large for the error due to the as-
sumption that 1 is finite to be as small as desired. The
area under the curve h(t) SZo( -f) [Eq. (2.3b)] in a half
plane is (2)1fl. It follows immediately from the definition
of F(t) that –2 < F(t)<2 [the second integral on the
right-hand side of Eq. (3.1) yields F(t)= 2 if a=O and
a“ = lforall nsuchthat t> Oandam=-l forall nsuch
that t <O]. Siiee the nemasary condition for chaos (i.e.,
for exits) is that M(t) have simple zeros, it follows from
Eq. (4.1) that chaos cannot occur if F(t) doea not reach
the zero line (@/3) /[(2) *fly] or

F(t) <0.9428/3/y . (4.3)

Since lF(t)/ <2, chaos cannot occur if

y/13< o.471 . (4.4)

The simplicity of Eq. (4.4) is noteworthy. Time his-
tories of the function F(t) for tO= 1.0, 0.35, and 0.1 are
shown in Fig. 4. It is seen that, as a criterion guarantee-
ing the nonoccurrence of exits, Eq. (4.4) is increasingly
weak as tObecomes smaller. We remark that Eq. (4.4) can
also be applied, with no modification, for coin-toss dicho-
tomous noise with random arrival times. More generally,
criteria similar to E@. (4.4) can be derived for other
reasonable tail-limited random excitations.

We show in Figs. 5(a) and 5(b) time history realizations
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FIG. 5. Tjme histories of z (t): (a) nonchaotic motion and (b)
chaotic motion.

corresponding to the dichotomous noise of Eq. (3.2),
tO= 1.0, parameters 6=0.1, f?= 1.5, and, respectively,
y/f3=0.469 <0.471 and y@= 1.887. The motion of
Fig. 5(a) is confined to one well. Its irregularity is due to
the stochastic nature of the excitation. The chaotic
motion of Fig. 5(b) is similar to chaotic motions induced
in the Duffing-Holmes oscillator by harmonic or quasi-
periodic excitation. Its irregularity is due to both the
chaotic nature of the motion and the stochastic nature of
the excitation. FigMe 5(b) shows that, as is the case for
equations with harm&$ forcing [12], the necessary con-
dition for the occurrence of chaos is helpful in the search
for chaotic regions of parameter space even for relatively
large c. Sensitivity to initial conditions (i.e., the positivity
of the largest Lyapounov exponent) was verified numeri-
cally for the motion of Fig. 5(b).

We have so far assumed that the noise G(t) is additive
[see Eq. (2.1)]. If in Eq. (2.1) we consider instead multi-
plicative noise r (z,2 )G (t), tlhen the filter h(r) =ZO(– r)
in Eq. (3.1) is simply replaced by the filter

hm(T)=iJ –T)r[zJ –-T),io( –7)] . (4.5)

V. MEAN EXIT TIME AND PROBABIIJIY
OF NO EXITS DURING A SPECIFIED TIME INTERVAL

In this section we consider only systems whose unper-
turbed counterparts have phase space dimension 2.

A. Lower bouad for tie meat exit time

We refer to Fig. 4 and note that a line of constant ordi-
nate O.9428/3/y would represent the zero line for the

!!
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Meinikov process. The areas between the zem line and
the positive ordinates of the GMF am the counterparts in
Fig. 4 of entraining lobes attch as those shown in Fig. 3.
Similarity, the areas between the zero line and the nega-
tive ordinates of the GMF would represent the counter-
parts in Fig. 4 of detraining lobes.

For sufficiently high ratios B/y, the zero up crossings
of the process M(t) are rare events. We ,denote the mean
time between these up crossings by rU. It is seen from
Fig. 3 that, on average, to within an approximation of or-
der one, no transport acroas the pseudoseparatrix can
occur during a time interval less than the mean zero un-
crossing time Tu of the Mtilkov process, that is, r“ is
smaller than (a lower bound for) the mean exit time from
a well r.. The type of Melnikov-based lower bound just
described is applicable regardless of the nature of the ex-
citation. In the case of excitation by white noise it has
been shown analytically that this lower bound is weak
[13]. Numerical simulations show that this is the case for
other types of noise as well.

B. Mean zero &rossing rates
estimated by discrete pkhbility function

We consider again Fig. 4, which shows typical realiz+
tions of the process F(Y) [Eq. (4.2)] for values
to= 1.0,0.35,0.1. Figure 4 shows that large excursions
of F( r ) are more likely for large values of to. This is so
because for large to the number of dominant terms in the
expression of F(t) is small and the probabilityy that suc-
cessive dominant terms wilt have the same sign is there-
fore relatively large. For relatively small 10 Monte Carlo
estimates of the probability of occurrence of large excur-
sions are poor owing to the rarity of such large excur-
sions. For this reason, to calculate the probability densi-
ty function of the stationary process F(f) we use the
discrete probability function (DPF) approach [14].

We define the sum

-l+i

Si= ~ akfk(r) , (5.1)
ks-1

i =0 ,. ... 21, and fk(f)=–sech[(k +a)t~–r]
+sech[(k + 1+a)to–t]. For any value oft, SO can take
on only two values *f_, with probability 0.5 for each.
Similarly, S ~can take on four values *f-,, tJ_l +, with
probability 0.25 each. This can be carried forward to cal-
culate the corresponding 2i+*terms of Si, with the corre-
sponding probability of 0.5i + 1 each. However, we can
calculate the probabilities associated with Si only for rel-
atively small values of i owing to limited computer
resources. This limitation can be circumvented by using
the DPF method to.construct histograms for S,.

~t [Si,n,Psi,n, n = 1,2,. ... N] denote the histogram
associated with Si, where [Si,n,.!$i,n+, ) denotes the nth
bin,

Psi,.= Jj”+’fiSi)dSl (5.2)
i,II

denotes the probability that the variant S1 is contained in
the nth bin, and ‘P(S, ) denotes the probability density

function (PDF) of Sj. The DPF of Si, P[Si ], is the set
P(Si ) catsisting of Si,n ~d P~i,m

‘[sjl=[s~.p~,~ , ~=1,4.. .,N] , (5.3)

where the set P [Si ] is determined recursively from
P[Si-,] [13].

The bins are determined recursively as follows. Start
with Sore, n=l, ..., N, by setting SO,,= – ]~t !,
So,~= +1~-, ], and S&. =S.,l -tn AO, where
AO=21~_,l/N. Similarly, S1,~ =S1,O+ n Al, where
Sl,l=–if–l[ –lf-l+l[, Sl,N=:+]j-fl +lf–l+l/, ad
A1=(S1,Y –S1,l )/N.

The bm probabilities are detumined by means of the
recurrence formula

N

P~i+l,m = 0.5 ~ Nn)P~j,& , (5.4)
k=l

where b(n)=l if Si+l, n <Si,k+”ai+lfi+l<sj+l,n+l and

O otherwise. The simulation is started with
P[sol=[so,npso,n, n =1, -.. ,N] with PSo,i=0.5 for
i = 1,N and Ofor all other i. This approach dramatically
reduces storage and computational requirements.

The advantage of explicit DPF calculations over
Monte Carlo (MC) simulations is illustrated in Fig. 6.
The Monte Carlo simulations represented in Fig. 6 were
one order of magnitude more lcomputationally intensive
than the DPF calculations; the probability density func-
tion (PDF) of F(r), shown in ‘Fig. 6 by the dotted line,
was calculated from 106 realizations of F(f). Neverthe-
less, an absolute value of F($) exceeding unity was a
sufficiently rare occurrence that the extremes of the PDF
obtained by Monte Carlo simulations contained a high
degree of statistical noise. For this reason, for rare exits,
Monte Carlo simulations yield poor estimates or no esti-
mates at all. The DPF method does not suffer from this
limitation. In our calculations we used 100 bins ranging

Level

FIG. 6. Probability density function of F( t) for zo ‘O. 1, es-

timated by the DPF approach (solid line) and by Monte Carlo
simulation (dotted line).
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from the lowest to the highest possible value of S1.
Similarly, we can use the DPF method to calculate ex-

plicitly the conditional PDF of dF( t)/dt given the value
of the function F. The conditional PDF’s based on
Monte Carlo simulations and the DPF method are shown
in Fig. 7 for to=1.0 and three levels of F. The condition-
al PDF’s calculated by the DPF method are symmetric,
as expected. The estimates obtained by the Monte Carlo
method are affected by large statistical noise. Owing to
the rare occurrences at the higher levels, the conditional
PDF obtained by the Monte Carlo method is also
skewed. It is noted that this skewness is due to sampling
errors and could be reduced if the number of realizations
used in the Monte Carlo procedure were larger. The
PDFs obtained by the DPF method allow the calculation
of the expected number of upcrossings by the function
F(t) of any desired levels [15].

Figure 8 shows the crosing rate as a function of un-
crossing level for to =0. 1,0.35, and 1.0. For example, for
Bl?’ ‘O. 53 [as in Fig. 5(b)], the threshold for the function
F(t) is 0.9428 XO.53 =0. 5 [Eq. (4.3)] and, from Fig. 6,
for to= 1.00 the mean up-crossing time is rU= 3. From a
counterpart of Fig. S(b), over a time interval
200< t<1000 the estimated mean exit time was r,= 32,

0.0

0.6

0.4

0.2
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: : .’
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- LeveI=O.8 ,
j
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Level=O.O Monte Carlo -------
DPF

0.8
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n.n---
-2 -1 0 1 z
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FIG. 7. Conditional probability density function of dF( t)/dt
given F(t)= O,F(t)=O.8, and F(t)= l.6, forrO=l.O.

which, aa expected, is longer than the mean zero un-

crossing time T“= 3 of the Mehtikov process.

C. Lower bound for the probability of no extt
during ● speeifkd time tnterval

If zero up-crossings of the Melnikov process are rare
events, the probability that no up-crossing occurs during
a specified time interval T can he written as

p~=exp( -T/?u ) . (5.5)

Since ~U<r,, p~ is an approximate lower bound for the
probability that exits from a well will not occur during
the time interval T. For example, for to ‘O. 1, y//?= 1.6,
and T= 10s, pr =0.9999. Even though the probabilityy
that no exit from a well can occur is higher, in such a
case the Melnikov-based lower bound may be useful in
some applications.
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1.0 as a function of the up-crossing level.
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VI. CONCLUSIONS

We showed that, for a wide class of nonlinear
ditkrential equations, forcing by dichotomous noise in-
duces behavior that has useful similarities to behavior in-
duced.by harmonic or quasiperiodic forcing. For certain
regions of parameter space, both the stochastic system
driven by noise and the deterministic system driven har-
monically experience behavior that may be chaotic or
nonchaotic. Nonchaotic behavior precludes the oc-
currence of exits from the potential wells. However, if
the behavior is chaotic, exits from the wells beeome pos-
sible. A necessary condition for the occurrence of chaos
in the deterministic and stochastic systems is the ex-
istence of simple zeros in, respectively, the Melnikov
function (which is a deterministic function) arid the Mel-
nikov process. This parallelism suggested extending, to
our stochastic differential equations, an approach baaed
on the theory of chaotic dynamics and originally

developed for deterministic systems. This approach ac-
commodates both additive and multiplicative noise and
yields a remarkably simple cxiterion guaranteeing the
nonoccurrence of exits. For second-order ditTerential
equations we obtained weak lower bounds for (a) the
mean exit time from a well and (b) the probability of
nonoccurrence of exits during a specified time interval.
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